

Domain-Specific

Languages

Mathieu Acher
Maître de Conférences
mathieu.acher@irisa.fr

Material

http://mathieuacher.com/teaching/MDE/MRI1516/

2

Homework

•  Deadline: 19th november
–  email: mathieu.acher@irisa.fr

•  Choose a DSL that is both external and internal (but not
present in the Github repository below).

•  The exercice is to develop a program in the DSL in three
equivalent variants:
–  Two variants with an internal shape of the DSL, in two different

GPLs
–  One variant with the external shape of the DSL
–  The three variants should have the same behavior

•  Source code and instructions on how to execute the
programs on the repository (by pull request):
–  https://github.com/acherm/metamorphicDSL-IDM1516

SQL

shape
#3

shape
#2

shape
#1

Scala
(internal DSL)

Java
(internal DSL)

Plain SQL
(external DSL)

Plan
•  Domain-Specific Languages (DSLs)

– Languages and abstraction gap
– Examples and rationale
– DSLs vs General purpose languages,

taxonomy
•  External DSLs

– Grammar and parsing
– Language workbenches, Xtext

•  DSLs, DSMLs, and (meta-)modeling

5

Contract
•  Better understanding/source of inspiration of

software languages and DSLs
– Revisit of history and existing languages

•  Foundations and practice of Xtext

– State-of-the-art language workbench (Most
Innovative Eclipse Project in 2010, mature and
used in a variety of industries)

•  Models and Languages
– Perhaps a more concrete way to see models,

metamodels and MDE (IDM in french)

6

Graphviz
Make Matlab

PGN

Finite State
Machine

Domain-Specific Languages (DSLs)

Syntax + Services

DSL =

Specialized notation:

Textual or Graphical
Specific Vocabulary
Idiomatic constructs

Specialized tools/IDE:

Editor with auto-completion, syntax highlighting, etc.
Compiler
Interpreter
Debugger
Profiler
Syntax/Type Checker
…

Language workbenches

•  Tools for reducing the gap between the
design and implementation of (external)
domain-specific languages

•  The Killer App for DSLs? http://
www.martinfowler.com/articles/
languageWorkbench.html

10

Language
Workbenches

Erdweg et al. SLE’13

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and
Klaus Ostermann. Sugarj: Library-based syntactic language
extensibility. OOPSLA’11

Projectional editing

Projectional editing

Projectional Editing

http://metaborg.org/spoofax/#meta-languages

Foundations (or some course
refresh)

18

Grammar

Source
Code

EBNF M3

M2

M1

Java Grammar

Java Program

Compilation Process
•  Source code

– Concrete syntax used for specifying a
program

– Conformant to a grammar
•  Lexical analysis

– Conveting a sequence of characters into a
sequence of tokens

•  Parsing (Syntactical analysis)
– Abtsract Syntax Tree (AST)

19

20

21

Scala AST
(example)

Compilation (en français)

23

DSL? The same!

24

Grammar

Source
Code

EBNF M3

M2

M1

DSL Grammar

DSL specification/

program

25

26

Grammar

Source
Code

EBNF M3

M2

M1

Metamodel

Model

Metametamodel

Grammarware Modelware

Grammar

Model A Model C

Model B

Metamodel

conforms To conforms To

Source
Code

A
Source
Code

B

Source
Code

C

Language and MDE

28

Give me a grammar,

I’ll give you (for free)
 * a comprehensive editor (auto-completion, syntax
highlitening, etc.) in Eclipse
 * an Ecore metamodel and facilities to load/serialize/visit
conformant models (Java ecosystem)
 * extension to override/extend « default » facilities (e.g.,
checker)

29

Xtext, Grammar, Metamodel

 Grammar

Source
Code

A

conforms To

Model A

Metamodel

conforms To

Xtext, Grammar, Metamodel

Xtext

•  Eclipse Project
– Part of Eclipse Modeling
– Part of Open Architecture Ware

•  Model-driven development of Textual DSLs
•  Part of a family of languages

– Xtext
– Xtend
– Xbase
– Xpand
– Xcore

Xtext Project

Eclipse Modeling Project

The grammar language

•  Corner-stone of Xtext
•  A… DSL to define textual languages

– Describe the concrete syntax
– Specify the mapping between concrete syntax

and domain model
•  From the grammar, it is generated:

– The domain model
– The parser
– The tooling

The Grammar Language of Xtext

•  Consistent look and feel
•  Textual DSLs are a resource in Eclipse
•  Open editors can be extended
•  Complete framework to develop DSLs
•  Easy to connect to any Java-based language

Main Advantages

Generate DSL tooling

Configure generator

Configure validation (opt)

Configure Scoping (opt)

Configure Fomatting (opt)

Defining the DSL
Grammar definition Workflow definition

Create Xtext Project

Development Process

Example DSL

•  Poll System application
– Define a Poll with the corresponding questions
– Each question has a text and a set of options
– Each option has a text

•  Generate the application in different
platforms

Poll System
Definition Generator

A first example

Generator

Something like…

Grammar
definition

Xtext Grammar

Xtext Grammar
Grammar

reuse

Xtext Grammar

Derived
metamodel

P
ar

se
r R

ul
es

Xtext Grammar

K
ey

w
or

ds

Xtext Grammar

Simple asignment

Multivalue asignment

(not	 here	 è	 ?= Boolean asignment)

Xtext Grammar

Cardinality (others: * ?)

Xtext Grammar

Containment

Xtext Grammar

Grammar and Programs/Specifications/Models

Grammar and Programs/Specifications/Models

Grammar and Programs/Specifications/Models

Grammar and Programs/Specifications/Models

Quizz Time
e9a8d603

Est-ce que le fichier vide .q est correct vis-à-vis de la
grammaire Xtext? Pourquoi?

#4

Quizz Time
e9a8d603

Est-ce que le fichier.q suivant est
correct vis-à-vis de la grammaire Xtext?
Pourquoi?

#5

Quizz Time
e9a8d603

Est-ce que le fichier.q suivant est
correct vis-à-vis de la grammaire
Xtext? Pourquoi?

#6

PollSystem {
 Poll p1 {
 Question {
 "Q1"
 options o1 : "R1"
 }
 }

}

Chess Example - Grammar
Game:
 "White:" whitePlayer=STRING
 "Black:" blackPlayer=STRING
 (moves+=Move)+;

Move:
 AlgebraicMove | SpokenMove;
AlgebraicMove:
 (piece=Piece)? source=Square (captures?='x'|'-') dest=Square;

SpokenMove:
 piece=Piece 'at' source=Square
 (captures?='captures' capturedPiece=Piece 'at' | 'moves to')
 dest=Square;

terminal Square:
 ('a'..'h')('1'..'8');

enum Piece:
 pawn = 'P' | pawn = 'pawn' |
 knight = 'N' | knight = 'knight' |
 bishop = 'B' | bishop = 'bishop' |
 rook = 'R' | rook = 'rook' |
 queen = 'Q' | queen = 'queen' |
 king = 'K' | king = 'king';

Chess Example - Model

White: "Mayfield"
Black: "Trinks“

pawn at e2 moves to e4
pawn at f7 moves to g5

K b1 - c3
f7 - f5

queen at d1 moves to h5
// 1-0

Online Generator

Variant

Guillaume Bécan, Mathieu Acher, Jean-Marc Jézéquel, and Thomas Menguy. On the Variability
Secrets of an Online Video Generator (2015). In VaMoS'15

Generator
~ composition of
video sequences

video
variants

Generator
~ composition of
video sequences

video
variants

Website/online
•  Random generation
•  Configurator
•  Game
•  …

#1 How to design,
create, and support
dedicated languages
(DSLs)?

#2 How to transform
models/programs?

#4 How do
frameworks
internally work?

#3 How to manage
variability/variants?

#1 How to design,
create, and
support
dedicated
languages
(DSLs)?

#2 How to transform
models/programs?

#4 How do
frameworks
internally work?

#3 How to manage
variability/variants?

Quizz Time
e9a8d603

Write a Xtext grammar so that the
specification below is conformant

#7

From Metamodel to Grammar

Grammar

Source
Code A

conforms To

Model A

Metamodel

conforms To

87

Give me a metamodel,

I’ll give you (for free)
 * a comprehensive editor (auto-completion, syntax
highlitening, etc.) in Eclipse
 * a grammar and facilities to load/serialize/visit
conformant models (Java ecosystem)
 * extension to override/extend « default » facilities (e.g.,
checker)

88

Give me a metamodel,

The grammar can be « weird » (i.e., not as concise and as
comprehensible than if you made it manually)

[Same observation actually applies to the other side: generated
metamodels (from grammar) can be weird as well, but you have at
least some control in Xtext-based grammar]
[We will experiment in the lab sessions]

Quizz Time
e9a8d603

Explain (roughly) the « algorithm » of
Xtext to generate a grammar from an
ecore Metamodel

#8

Graphical vs. Textual DSLs
•  Success depends on how the notation fits the domain

class	 Person	 {	
	 	 private	 String	 name;	
	 	 private	 String	 name;	
}	

Person	 has	 (name,	 surname)	

Person
name : string
surname : string

•  Graphical DSLs are not always easier to understand

Graphical vs Textual DSLs

A language can be
graphical and textual

Alternative representation 96

Recommendations Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

There should be a 1:1 correspondence
between concepts and graphical symbols

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit
Different symbols should be
clearly distinguishable from each
other

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Recommendations for
Graphical DSLs

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Use visual representations
whose apprarance suggests their
meaning

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Include mechanisms for dealing
with complexity

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Include explicit mechanisms to
support integration of information
from different diagrams

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Use the full range and capacities
of visual variables

Recommendations for
Graphical DSLs

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Use text to complement graphics

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

The number of different graphical
symbols should be cognitively
manageable

Recommendations for
Graphical DSLs

Recommendations

Physics
of

notations

Semiotic clarity

Perceptual
Discriminality

Semantics
transparency

Complexity
Management

Cognitive
Integration

Visual
Expressiveness

Dual Coding

Graphic
Economy

Cognitive Fit

Use different visual dialects for
different tasks and audiences

Recommendations for
Graphical DSLs

•  Model-Driven Framework to develop graphical editors based
on EMF and GEF

•  GMF is part of Eclipse Modeling Project
•  Provides a generative component to create the DSL tooling
•  Provides a runtime infrastructure to facilitate the development

of graphical DSLs

Graphical Modeling Framework (GMF)

GMF

•  Eclipse project
– Eclipse Modelling components
– Uses

•  EMF (Eclipse Modeling Framework)
•  GEF (Graphical Editing Framework)

•  Model-driven framework for Graphical DSLs
– Everything is a model

•  DSL definition easy, tweaking hard

GMF

Eclipse Modeling Project Eclipse Modeling Project

Parts of GMF

•  Tooling
– Editors for notation, semantic and tooling
– GMF Dashboard
– Generator to produce the DSL implementation

•  Runtime
– Generated DSLs depend on the GMF Runtime

to produce an extensible graphical editor

GMF features

Main advantages

•  Consistent look and feel
•  Diagram persistence
•  Open editors can be extended by third-parties
•  Already integrated with various Eclipse

components
•  Extensible notation metamodel to enable the

isolation of notation from semantic concerns
•  Future community enhancements will easily be

integrated

Main Advantages

Generate Diagram Plugin

Create Generator Model

Develop Mapping Model

Defining the DSL
Domain Model Graphical Definition Tooling Definition

Create GMF Project

Development Process

Proposed development process Development Process

Example DSL Example (Graphical Notation)

Domain Model
•  Concepts

– PollSystem
– Poll
– Question
– Option

•  Attributes
– A Poll has a name
– A Question has an identifier and a descriptive text
– An Option has an identifier and a descriptive text

•  Relationships
– PollSystem is composed of polls and questions
– Question has a set of options

Poll System Metamodel

Graphical Definition
•  A model will represent a PollSystem
•  A Poll will be a node
•  A Question will be a rectangular node
•  An Option will be a rectangular node included in the Question node

Graphical Definition

Plan
•  Domain-Specific Languages (DSLs)

– Languages and abstraction gap
– Examples and rationale
– DSLs vs General purpose languages,

taxonomy
•  External DSLs

– Grammar and parsing
– Xtext

•  DSLs, DSMLs, and (meta-)modeling

124

Contract
•  Better understanding/source of inspiration of

software languages and DSLs
– Revisit of history and existing languages

•  Foundations and practice of Xtext

– State-of-the-art language workbench (Most
Innovative Eclipse Project in 2010, mature and
used in a variety of industries)

•  Models and Languages
– Perhaps a more concrete way to see models,

metamodels and MDE (IDM in french)

125

Abstraction Gap

127

Models/MDE
•  In essence, a model is an abstraction of

some aspect of a system under study.
•  Some details are hidden or removed to

simplify and focus attention.
•  A model is an abstraction since general

concepts can be formulated by abstracting
common properties of instances or by
extracting common features from specific
examples

•  (Domain-specific) Languages enable the
specification or execution of models

128

Generative approach

•  Programming the generation of programs
•  Very old practice
•  Metaprogramming: generative language and target

language are the same
–  Reflection capabilities

•  Generalization of this idea:
–  from a specification written in one or more textual

or graphical domain-specific languages
–  you generate customized variants

129

conforms To

machineDefinition:	
	 	 MACHINE	 OPEN_SEP	 stateList	 	
	 	 transitionList	 CLOSE_SEP;	
	
stateList:	
	 	 state	 (COMMA	 state)*;	
	
state:	
	 	 ID_STATE;	
	
transitionList:	
	 	 transition	 (COMMA	 transition)*;	
	
transition:	
	 	 ID_TRANSITION	 OPEN_SEP	 	
	 	 state	 state	 CLOSE_SEP;	
	
MACHINE:	 ‘machine’;	
OPEN_SEP:	 ‘{’;	
CLOSE_SEP:	 ‘{’;	
COMMA:	 ‘,’;	
ID_STATE:	 ‘S’	 ID;	
ID_TRANSITION:	 ‘T’	 (0..9)+;	
ID:	 (a..zA..Z_)	 (a..zA..Z0..9)*;

machine	 {	
	 	 SOne	 STwo	
	 	 T1	 {	 SOne	 STwo	 }	
}

Grammar MetaModel

Source Code/Model

conforms To

Model, Metamodel,
Metametamodel, DSML

131

132

Grammar

Source
Code

EBNF M3

M2

M1

Metamodel

Model

Metametamodel

Language and MDE

Grammarware Modelware

Grammar

Model A Model C

Model B

Metamodel

conforms To conforms To

Source
Code

A
Source
Code

B

Source
Code

C

Language and MDE

Grammar

Source
Code B

conforms To

Model A

Metamodel

conforms To

MDE, Grammar: there and back
again

135

2011
« Domain-specific
languages are far more
prevalent than
anticipated »

What are models used for?

“Do not use” percentages for MDE activities

UML BPMN Vendor
DSL

In-house
DSL

SysML Matlab/
Simulink

Which modeling languages do you use?

Which diagrams are used?

19 different diagram types are used regularly

Use of multiple languages (DSLs)

•  62% of those using custom DSLs also use
UML

•  Almost all users of SysML and BPMN also
use UML

•  UML is the most popular ‘single use’
language
–  38% of all respondents

•  UML used in combination with just about
every combination of modeling languages
–  14% of UML users combine with vendor DSL
–  6% with both custom and vendor DSL

UML can be seen as a collection of
domain-specific modeling languages

140

 Behavioral
Structural

Xtext is built using MDE technologies

141

Xtext (and alternatives) democratize DSL
development

Worst practices

•  Tradeoff cost/time of development versus
producivity gained for solving problems
–  If you use your DSL for resolving one problem,

just one time, hum…
– DSL: reusable, systematic means to resolve a

specific task in a given domain
•  DSL development can pay off quickly

– 5’ you can get a DSL
•  But DSL development can be time-

consuming and numerous worst practices
exists

When Developing DSLs?

Actors Actors

Actors

Technical Level

D
om

ai
n

K
no

w
le

dg
e

High

High Low

Low

Actors

Best practices

Limit
Expressiveness Viewpoints

Evolution Learn from
GPLs

Support Tooling

Best Practices

Worst practices

•  Initial conditions
– Only Gurus allowed

•  Believe that only gurus can build languages ir that
“I’m smart and don’t need help”

– Lack of Domain Understanding
•  Insufficiently understanding the problem domain or

the solution domain
– Analysis paralysis

•  Wanting the language to be theoretically complete,
with its implementation assured

Worst Practices

Worst practices

•  The source for Language Concepts
– UML: New Wine in Old Wineskins

•  Extending a large, general-purpose modeling language

–  3GL Visual Programming
•  Duplicanting the concepts and semantics of traditional

programming languages
– Code: The Library is the Language

•  Focusing the language on the current code’s technical
details

– Tool: if you have a hammer
•  Letting the tool’s technical limitations dictate language

development

Worst Practices

Worst practices

•  The resulting language
– Too Generic / Too Specific

•  Creating a language with a few generic concepts or
too many specific concepts, or a language that can
create only a few models

– Misplaced Emphasis
•  Too strongly emphasizing a particular domain

feature
– Sacred at Birth

•  Viewing the initial language version as unalterable

Worst Practices

Worst practices

•  Language Notation
– Predetermined Paradigm

•  Choosing the wrong representational paradigm or
the basis of a blinkered view

– Simplistic Symbols
•  Using symbols that are too simple or similar or

downright ugly

Worst Practices

Worst practices

•  Language Use
–  Ignoring the use process

•  Failing to consider the language’s real-life usage

– No training
•  Assuming everyone understands the language like

its creator
– Pre-adoption Stagnation

•  Letting the language stagnate after successful
adoption

Worst Practices

References
•  Martin Fowler. Domain Specific Languages. Addison-Wesley

Professional, 2010.
•  Markus Voelter et al. “DSL Engineering: Designing,

Implementing and Using Domain-Specific Languages.”
dslbook.org, 2013.

•  Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian
Zarnekow, Robert von Massow, Wilhelm Hasselbring, and
Michael Hanus. Xbase: Implementing domain-specific
languages for java. GPCE ’12

•  Steven Kelly and Risto Pohjonen. Worst practices for domain-
specific modeling. IEEE Software, 26(4):22–29, 2009.

•  Lennart C.L. Kats and Eelco Visser. The spoofax language
workbench: Rules for declarative specification of languages and
ides OOPSLA’10

References
•  Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte

Boersma, Remi Bosman, William R. Cook, Albert Gerritsen,
Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël D. P. Konat,
Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu,
Eelco Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi
van der Woning. The state of the art in language workbenches
conclusions from the language workbench challenge. SLE’13

•  Steven Kelly, Kalle Lyytinen, Matti Rossi, and Juha-Pekka
Tolvanen. Metaedit+ at the age of 20. In Seminal Contributions
to Information Systems Engineering, pages 131–137. Springer,
2013.

•  Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and
Klaus Ostermann. Sugarj: Library-based syntactic language
extensibility. OOPSLA’11

http://martinfowler.com/bliki/
DomainSpecificLanguage.html

155

