

Domain-Specific

Languages

Mathieu Acher
Maître de Conférences
mathieu.acher@irisa.fr

Material

http://mathieuacher.com/teaching/MDE/MRI1516/

2

Plan
•  Domain-Specific Languages (DSLs)

– Languages and abstraction gap
– Examples and rationale
– DSLs vs General purpose languages,

taxonomy
•  External DSLs

– Grammar and parsing
– Language workbenches, Xtext

•  DSLs, DSMLs, and (meta-)modeling

3

Contract
•  Better understanding/source of inspiration of

software languages and DSLs
– Revisit of history and existing languages

•  Foundations and practice of Xtext

– State-of-the-art language workbench (Most
Innovative Eclipse Project in 2010, mature and
used in a variety of industries)

•  Models and Languages
– Perhaps a more concrete way to see models,

metamodels and MDE

4

The (Hi)Story of Software
Engineering / Computer Science

6

1937

•  Infinite tape divided into Cells (0 or 1)
•  Read-Write Head
•  Transitition rules

7

Turing Machine

Write a symbol
or move to left (>>) or right
(<<)

Turing Machine
~ kind of state machine

8

Question: what does it compute?

9

Quizz Time

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Question: what does it compute?

32

33

function succ (n) {
 return n + 1;

}

(lambda (x) (+ x 1))

 Successor (add-one) function
assuming that number n as a block of n+1 copies of

the symbol ‘1’ on the tape (here, n=3)

34

Addition of n+m

35

http://graphics.stanford.edu/~seander/bithacks.html
Maybe you prefer to use bit operations?

The (Hi)Story of Software
Engineering / Computer Science

36

37

Software
Languages

Programming the Turing Machine
Why aren’t we using tapes, states and

transitions after all ?

38

Distributed systems

Thousands of
engineers/expertise

Web dev.

Large-scale systems

Critical Systems

Complex Systems

Programming the Turing Machine
Why aren’t we using tapes, states and

transitions after all ?

39

You cannot be serious

 Formulas are Turing complete

 Formulas are Turing complete

h"p://fr.slideshare.net/Felienne/spreadsheets-­‐are-­‐code-­‐online	

Youtube	
 video	
 h"ps://t.co/RTfJAxXYaX	

Esoteric	
 programming	
 languages	

•  Designed	
 to	
 test	
 the	
 boundaries	
 of	
 computer	

programming	
 language	
 design,	
 as	
 a	
 proof	
 of	

concept,	
 as	
 so7ware	
 art,	
 or	
 as	
 a	
 joke.	
 	

– extreme	
 paradigms	
 and	
 design	
 decisions	

– Eg	
 h=ps://esolangs.org/wiki/Brainfuck	

•  Usually,	
 an	
 esolang's	
 creators	
 do	
 not	
 intend	

the	
 language	
 to	
 be	
 used	
 for	
 mainstream	

programming.	

(brainfuck)	

What	
 does	
 it	
 compute?	

++++++++++[>+++++++>++++++++++>+++<<<-­‐]>++.>+.+++++++	

	
 ..+++.>++.<<+++++++++++++++.>.+++.-­‐-­‐-­‐-­‐-­‐-­‐.-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐.>+.	

Quizz Time

•  Why assembly language is not the

mainstream language?
•  Why spreadsheets are not used for

building Google?
•  Why esoteric languages are not used for

mainstream programming?

Programming the Turing Machine
Why aren’t we using tapes, states

and transitions after all ?

45

Software Languages
Hard to write and understand.
No abstractions.
Hard to debug and test.
Poor language constructs. Poor
tooling support.
Performance.
Usability, productivity,
reusability, safety,
expressiveness, learnability.

Question: what does it compute?

46

Performance, usability,
productivity, reusability, safety,
expressiveness, learnability.

Qualities and challenges
•  Cognitive dimensions (see references after)
•  Abstractions

– Eg Kramer “Abstraction and Modelling - A
Complementary Partnership” MODELS’08

•  Separation of concerns/modularity
– Eg Tarr et al., ICSE’99

•  Scalability
– Growing a language (like Scala)

•  Performance
•  …

48

Languages
Complex
Systems

We need languages
1.  At a high level of abstraction

1.  Still general-purpose
2.  Generation of other artefacts written in other

languages
3.  Transformation, refinement

2.  Multiplicity of languages
1.  Divide and conquer
2.  Specific to a problem or “domain”
3.  Induce a way to “compose” languages
(Combemale et al. “On the Globalization of Domain-Specific Languages”)

“Even variations in grammar can
profoundly affect how we see the
world.”

She’s talking about real languages; what about
synthetic, programming languages?

What is a language?

•  « A system of signs, symbols, gestures, or
rules used in communicating »

•  « The special vocabulary and usages of a
scientific, professional, or other group »

•  « A system of symbols and rules used for
communication with or between
computers. »

51

Architecture Architecture

Cartography Cartography

Biology Biology

Electronics Electronics

In Software Engineering

« Languages are the primary
way in which system developers
communicate, design and
implement software systems »

56

57

General Purpose
Languages
Assembly ?
COBOL ? LISP ? C ? C++ ?
Java? PHP ? C# ? Ruby ?

Limits of General Purpose Languages (1)
•  Abstractions and notations used are not

natural/suitable for the stakeholders

58

•  Not targeted to a particular kind of
problem, but to any kinds of software
problem.

59

Limits of General Purpose Languages (2)

•  Targeted to a particular kind of problem,
with dedicated notations (textual or
graphical), support (editor, checkers, etc.)

•  Promises: more « efficient » languages for
resolving a set of specific problems in a
domain

60

Domain Specific Languages

A discussable view
(slide “OptiML…” Sujeeth et al., ICML’11)

•  Long history: used for almost as long as
computing has been done.

•  You’re using DSLs in a daily basis

•  You’ve learnt many DSLs in your
curriculum

•  Examples to come! 62

Domain Specific Languages (DSLs)

HTML

Domain: web (markup)

63

CSS

Domain: web (styling)

64

SQL

Domain: database (query)

65

Makefile

Domain: software building

66

Lighthttpd configuration
file

Domain: web server (configuration)

67

Graphviz

Domain: graph (drawing)

68

PGN (Portable Game
Notation)

Domain: chess (games)

69

Regular expression

Domain: strings (pattern matching)

70

Graphviz
Make Matlab

PGN

Finite State
Machine

Domain-Specific Languages (DSLs)

Quizz Time
•  Give three other examples of domain-

specific languages (DSLs)

Domain: model management

73

self.questions-­‐>size	
 	

self.employer-­‐>size	

self.employee-­‐>select	
 (v	
 |	
 v.wages>10000	
)-­‐>size	

Student.allInstances	

	
 	
 -­‐>forAll(
 p1,	
 p2	
 |	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p1	
 <>	
 p2	
 implies	
 p1.name	
 <>	
 p2.name	
)	

OCL

UML can be seen as a collection
of domain-specific modeling

languages

74

 Behavioral
Structural

Problem
Space Solution

Space

Assembler

C, Java

DSLs

Abstraction
Gap

« Another lesson we should have learned from the recent past is
that the development of 'richer' or 'more powerful' programming
languages was a mistake in the sense that these baroque
monstrosities, these conglomerations of idiosyncrasies, are really
unmanageable, both mechanically and mentally.

I see a great future for very systematic and
very modest programming languages »

ACM Turing Lecture, « The Humble Programmer »
Edsger W. Dijkstra 76

aka Domain-
Specific
Languages

aka General-Purpose
Languages

1972

77

2011
« Domain-specific
languages are far more
prevalent than
anticipated »

78

2011

What is a domain-specific
language ?

•  « Language specially designed to perform a
task in a certain domain »

•  « A formal processable language targeting at a
specific viewpoint or aspect of a software
system. Its semantics and notation is
designed in order to support working with that
viewpoint as good as possible »

•  « A computer language that's targeted to a
particular kind of problem, rather than a
general purpose language that's aimed at any
kind of software problem. »

79

A GPL provides notations that are used to describe a computation in a
human-readable form that can be translated into a machine-readable
representation.

A GPL is a formal notation that can be used to describe problem
solutions in a precise manner.

A GPL is a notation that can be used to write programs.

A GPL is a notation for expressing computation.

A GPL is a standardized communication technique for expressing
instructions to a computer. It is a set of syntactic and semantic rules
used to define computer programs.

GPL (General Purpose Language)

What is offered?

Higher
abstractions

Avoid
redundancy

Separation
of concerns

Use domain
concepts

Promises of domain-specific languages

Benefits

Productivity

Quality

V&V

Communication Domain
Expert

No
Overhead

Platform
Independent

Promises of domain-specific languages

General PLs vs Domain-SLs

The boundary isn’t as clear as it could be. Domain-
specificity is not black-and-white, but instead gradual: a
language is more or less domain specific

GeneralPL vs DomainSL

•  Promises of DSL« improvement » in terms of
–  usability, learnability, expressiveness, reusability, etc.

•  Empirical study on the role of syntax
– C-style syntax induces problems in terms of usability

for novices; language more or less intuitive for
(non-)programmers (Stefik et al. 2014)

– Syntax issues with Java for students (Denny et al. 2011)

– PL usability: method namings/placement, use of
identifiers, API design (Ellis et al., Styllos et al., Clarke, Montperrus et
al., etc.)

•  More specialized/sophicated tools/IDE can be
derived from a DSL
–  editors, compilers, debuggers

84

Specializing syntax and
environment pays off?

Quizz Time
•  Take one DSL and formulate assumptions

on their qualities (and superiority to a
GPL-based solution)

•  Imagine an experience for providing
evidence that the DSL has such qualities

External DSLs vs Internal DSLs

•  An external DSL is a completely separate
language and has its own custom syntax/
tooling support (e.g., editor)

•  An internal DSL is more or less a set of
APIs written on top of a host language
(e.g., Java).
– Fluent interfaces

86

External vs Internal DSL (SQL example)

87

Internal DSL (LINQ/C# example)

88

Internal DSL
•  « Using a host language (e.g., Java) to give the

host language the feel of a particular
language. »

•  Fluent Interfaces
–  « The more the use of the API has that language like

flow, the more fluent it is »

89

SQL in… Java
DSL in GPL

90

Regular expression in… Java
DSL in GPL

91

•  Traditional dichotomy between internal DSL
and external DSL (Fowler et al., 2010)

– Fluent APIs
–  Internal DSLs
–  (deeply) embedded DSLs
– External DSLs
– What’s LINQ?

•  Boundary between DSL and GPL is not that
clear (Voelter et al., 2013)
– What is and what is not a DSL is still a debate

92

Terminology

Internal DSLs vs External DSL
•  Both internal and external DSLs have

strengths and weaknesses (Fowler et al., 2010)
–  learning curve,
–  cost of building,
–  programmer familiarity,
–  communication with domain experts,
– mixing in the host language,
–  strong expressiveness boundary

•  Focus of the next course
– external DSL a completely separate language

with its own custom syntax and tooling support
(e.g., editor)

93

Quizz Time
•  Find a DSL that is both internal and

external (but not HTML, not SQL)

HTML

•  External DSL: <html>….
•  Internal DSLs

– LISP
– Scala (XML support included in the language)

https://github.com/julienrf/glitter

TCS Wyvern (Omar et al., OOPLSA’14)

Scala

SQL

shape
#3

shape
#2

shape
#1

Scala
(internal DSL)

Java
(internal DSL)

Plain SQL
(external DSL)

Homework

•  Deadline: 19th november
–  email: mathieu.acher@irisa.fr

•  Choose a DSL that is both external and internal (but not
present in the Github repository below).

•  The exercice is to develop a program in the DSL in three
equivalent variants:
–  Two variants with an internal shape of the DSL, in two different

GPLs
–  One variant with the external shape of the DSL
–  The three variants should have the same behavior

•  Source code and instructions on how to execute the
programs on the repository (by pull request):
–  https://github.com/acherm/metamorphicDSL-IDM1516

SQL

shape
#3

shape
#2

shape
#1

Scala
(internal DSL)

Java
(internal DSL)

Plain SQL
(external DSL)

References
•  Martin Fowler. Domain Specific Languages. Addison-

Wesley Professional, 2010.
•  Markus Voelter et al. “DSL Engineering: Designing,

Implementing and Using Domain-Specific Languages.”
dslbook.org, 2013.

•  Kramer “Abstraction and Modelling - A Complementary
Partnership” MODELS’08

•  Tarr et al. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns” ICSE’99

•  Benoit Combemale, Julien Deantoni, Benoit Baudry,
Robert France, Jean-Marc Jézéquel, and Jeff Gray.
« Globalizing Modeling Languages.” Computer, 2014.

References
•  Leo A Meyerovich and Ariel S Rabkin. “Empirical

analysis of programming language adoption”
OOPSLA’13

•  Felienne Hermans, Martin Pinzger, and Arie van
Deursen. “Domain-Specific languages in practice: A
user study on the success factors.“ MODELS’09

•  Paul Denny, Andrew Luxton-Reilly, Ewan Tempero,
and Jacob Hendrickx. “Understanding the syntax
barrier for novices.” ITiCSE ’11

•  Tiark Rompf et al . “Optimizing Data Structures in
High-Level Programs: New Directions for Extensible
Compilers based on Staging” POPL’13

References
•  Mathieu Acher, Benoît Combemale, Philippe Collet:

“Metamorphic Domain-Specific Languages: A
Journey into the Shapes of a Language.” Onward!
2014

•  Jeffrey Stylos and Brad A. Myers. “The implications
of method placement on api learnability” FSE’08

•  Martin Monperrus, Michael Eichberg, Elif Tekes,
and Mira Mezini. “What Should Developers Be
Aware Of? An Empirical Study on the Directives of
API Documentation”. Empirical Software
Engineering, 17(6):703–737, 2012.

Plan
•  Domain-Specific Languages (DSLs)

– Languages and abstraction gap
– Examples and rationale
– DSLs vs General purpose languages,

taxonomy
•  External DSLs

– Grammar and parsing
– Language workbenches, Xtext

•  DSLs, DSMLs, and (meta-)modeling

103

Contract
•  Better understanding/source of inspiration of

software languages and DSLs
– Revisit of history and existing languages

•  Foundations and practice of Xtext

– State-of-the-art language workbench (Most
Innovative Eclipse Project in 2010, mature and
used in a variety of industries)

•  Models and Languages
– Perhaps a more concrete way to see models,

metamodels and MDE

104

