

Model Management

in Xtend
(second part)

Mathieu Acher
Maître de Conférences
mathieu.acher@irisa.fr

Material

http://mathieuacher.com/teaching/MDE/

2

Plan
•  Model Management in a nutshell

–  Loading, serializing, transforming models
•  Xtend

–  Java 10, cheatsheet
– Advanced features: extension methods, active

annotations, template expressions
– Xtend: behing the magic (Xtext+MDE)

•  Model Management + Xtend
– Model transformations
– @Aspect annotation
– Xtend + Xtext (breathing life into DSLs)

3

Contract
•  Practical foundations of model management
•  Learning and understanding Java 10 (aka Xtend)

–  advanced features of a general GPL, implementation of
a sophisticated language using MDE

•  Model transformations
– Model-to-Text
– Model-to-Model

•  Metaprogramming
– Revisit annotations (e.g., as in JPA or many

frameworks)
•  DSLs and model management: all together (Xtext

+ Xtend)
4

6

Do You know Java Annotations ?

@Override

@SuppressWarnings

Annotations (Junit 4)

http://www.vogella.com/articles/JUnit/
article.html#usingjunit_annotations

9

Java
Annotations

Javadoc
(old fashion, not real annotations)

12

The Google Annotations Gallery is an exciting new Java open
source library that provides a rich set of annotations for
developers to express themselves.
Do you find the standard Java annotations dry and lackluster?
Have you ever resorted to leaving messages to fellow
developers with the @Deprecated annotation? Wouldn't you
rather leave a @LOL or @Facepalm instead?

Not only can you leave expressive remarks in your code, you
can use these annotations to draw attention to your poetic
endeavors. How many times have you written a palindromic or
synecdochal line of code and wished you could annotate it for
future readers to admire? Look no further than @Palindrome
and @Synecdoche.

But wait, there's more. The Google Annotations Gallery comes
complete with dynamic bytecode instrumentation. By using the
gag-agent.jar Java agent, you can have your annotations
behavior-enforced at runtime. For example, if you want to
ensure that a method parameter is non-zero, try
@ThisHadBetterNotBe(Property.ZERO). Want to completely
inhibit a method's implementation? Try @Noop.

Annotations for…
•  Documentation

–  Javadoc like
•  Information to the Compiler

– Supress warnings, error detections
•  Generation

– Code (Java, SQL, etc.)
– Configuration files (e.g., XML-like)

•  Runtime processing

⇒ Transformation of programs, datas, models
⇒  You can define your own

Annotations: How does it work?

Annotations: How does it work?

Transformation of Java code

Annotations and Transformations
(Java 5, old way)

Annotation
Processors

Source
apt

.html

.java

.txt

…

Annotations and Transformations
(Java 5, old way)

Annotation
Processors

apt

Annotations and Transformations
(Java 6, bye bye apt)

Annotation
Processors

Source
javac

.html

.java

.txt

…

Integrated into the Java compiler (javac)
New API: Pluggable Annotation Processing

Annotations and Transformations
(Java 6, bye bye apt)

Annotation
Processors

Source
javac

.html

.java

.txt

…

javac –processor …

Alternative: Java Reflection

http://www.jmdoudoux.fr/java/dej/
chap-annotations.htm#annotations-7

You can define your own
annotations

•  Specification
– At the Class, Field, Method level
– Annotations can be combined
– Annotations can have parameters

•  Transformation (compilation)
–  Introspection
– Compiler (javac/apt) and definition of

« processors »
•  Widely used

– Generation, verification, etc.

Back to Xtend

•  Active Annotations
– Facilities to specify Annotations and their

treatment (API)
– Seamless integration in the IDE

•  On-the-fly compilation to Java allows proper type
checking and auto-completion

Example

Example

Example (2)

Predefined Annotations

Plan
•  Model Management in a nutshell

–  Loading, serializing, transforming models
•  Xtend

–  Java 10, cheatsheet
– Advanced features: extension methods, active

annotations, template expressions
– Xtend: behing the magic (Xtext+MDE)

•  Model Management + Xtend
– Model transformations
– @Aspect annotation
– Xtend + Xtext (breathing life into DSLs)

30

Contract
•  Practical foundations of model management
•  Learning and understanding Java 10 (aka Xtend)

–  advanced features of a general GPL, implementation of
a sophisticated language using MDE

•  Model transformations
– Model-to-Text
– Model-to-Model

•  Metaprogramming
– Revisit annotations (e.g., as in JPA or many

frameworks)
•  DSLs and model management: all together (Xtext

+ Xtend)
31

33

UI
model

34

One step/stage transformation
hardly the case

UI
model

Element stereotype

Design pattern application
(parametric collaboration)

…and also
Tagged values
& Contracts

Command pattern

receiver
invoker

Embedding implicit semantics
into a model

35

…and the result we want...

36

Persitence implementation

Command pattern implementation

How To:
Automatic Model Transformations

37

Model-to-Text (M2T) vs.
Model-to-Model (M2M)

•  M2T Transformations
– Should be limited to syntactic level transcoding

•  M2M Transformations
– To handle more complex, semantic driven

transformations

38

M2T Approaches

•  For generating: code, XML, HTML, doc.
– Visitor-Based Approaches:

•  Some visitor mechanisms to traverse the internal
representation of a model and write code to a text stream

•  Iterators, Write ()
–  e.g., Processors (Annotations)

– Template-Based Approaches
•  A template consists of the target text containing slices of

meta-code to access information from the source and to
perform text selection and iterative expansion

•  The structure of a template resembles closely the text to
be generated

•  Textual templates are independent of the target language
and simplify the generation of any textual artefacts

Classification of M2M
Transformation Techniques

1. General purpose programming languages
–  Java/C#...

2. Generic transformation tools
–  Graph transformations, XSLT…

3. CASE tools scripting languages
–  Objecteering, Rose…

4. Dedicated model transformation tools
–  OMG QVT style

5. Meta-modeling tools
–  Metacase, Xactium, Kermeta…

•  Processors of Annotations can also be used

Templates (1)

Facilities to create objects
in a programmatic way

We already give examples of transformation, defined over
the metamodel…

Common point: the need to visit
the model (graph)

Visit the model (graph)
Possible solution: a series of casts (lots of
if-statements and traversal loops)

Visitor Pattern
separating an algorithm from an object structure on which it operates

new operations can be added modularly, without needing to edit any of the Node
subclasses: the programmer simply defines a new NodeVisitor subclass
containing methods for visiting each class in the Node hierarchy.

Visitor Pattern (problems)

#1 stylized double-dispatching code is tedious to write and prone to error.

Visitor Pattern (problems)

#2 the need for the Visitor pattern must be anticipated ahead of
time, when the Node class is first implemented

Visitor Pattern (problems)

#3 class hierarchy evolution (e.g., new Node subclass) forces us to rewrite
NodeVisitor

Visitor Pattern
(impact of the

problem)

Visitor Pattern
(impact of the

problem)

No accept method

Visitor Pattern
(impact of the

problem)

Handcrafted code?

Visitor Pattern
(impact of the

problem)
⇒  Manual
⇒  Some classes are not
concerned by the visit…

⇒  If Xtext Grammar changes,
you can restart again

Visitor Pattern (requirements)

#3 class hierarchy evolution (e.g., new Node subclass) forces us to (completely)
rewrite NodeVisitor

#2 the need for the Visitor pattern must be anticipated ahead of
time, when the Node class is first implemented

#1 stylized double-dispatching code is tedious to write and prone to error.

Automation

No accept method
Violation of open/close principle: no way

Automation

Possible solution (1):
« *Switch » generated
by… EMF

Possible solution (2):
Extension Methods of
Xtend

Context (classical with the Visitor)

Can be seen as a way
to avoid a (very) long list of
parameters and record
the « state » of the visit

Weaving methods

AspectA can handle a context in a proper way

https://github.com/diverse-project/k3/
blob/master/core/k3/src/main/java/fr/
inria/triskell/k3/Aspect.xtend

http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/
org.eclipse.xtend.core/src/org/eclipse/xtend/core/Xtend.xtext

Xtend to Java

http://docs.oracle.com/javase/6/docs/
technotes/guides/language/
annotations.html

http://docs.oracle.com/javase/tutorial/java/
annotations/

