

Software Product

Lines and
Requirements

Mathieu Acher
Maître de Conférences
mathieu.acher@irisa.fr

Material

2

http://mathieuacher.com/teaching/IDE1718/

Plan
•  Challenges and Overview

– Developping billions of software product is hard
but now a common practice

•  Implementing Variability
– Revisit of existing techniques and curriculum

•  Specificity of Product Line Engineering
– Process, methods, requirements

•  Feature Models
– Defacto standard for modeling product lines and

variability requirements
– Syntax, semantics, automated reasoning

3

What you will learn
•  The idea of software product lines and

variability
– You will be able to recognize this class of systems
– Aware of the complexity, the specific development

process, and existing requirement techniques
•  Feature modeling

– A widely used formalism for modeling product lines
and configurable systems in a broad sense (incl. for
requirements)

4

Product	Lines	

5	

(So0ware)	Product	Lines	

6	

The	three	ways	to	build	a	(so0ware)	product	

Indepently		

7	

„Clone	&	Own“	 „Shared“	(reusable)	Assets	

(credits:	Thorsten	Berger’s	slide)	

The	three	ways	to	build	a	(so0ware)	product	

Indepently		

8	

„Clone	&	Own“	 „Shared“	(reusable)	Assets	

So0ware	Product	Lines	
	
	
Product	Configura2on	
Variability	Modeling		
Components	
Domain-specific	Languages	
Generators	
Preprocessors	
Design	PaAerns	
…	
	

(credits:	Thorsten	Berger’s	slide)	

not, and, or, implies

Feature	models		
or	Product	Matrices	

Variants	of	code	(e.g.,	Java	or	C)		
Variants	of	user	interfaces	
Variants	of	video	sequences	
Variants	of	models	(e.g.,	UML	or	
SysML)	
Variants	of	«	things	»	(3D	
models)	
…	

Modeling	Variability		

(product	lines)	

Or

Xor

Mandatory

Optional

not, and, or, implies

Variability	Models	(feature	models)	

Variants	of	code	(e.g.,	Java	or	C)		
Variants	of	user	interfaces	
Variants	of	video	sequences	
Variants	of	models	(e.g.,	UML	or	SysML)	
Variants	of	«	things	»	(3D	models)	
…	

Analyzing/ExtracKng	
Encoding/Formalizing	

Analyzing/ExtracKng	
Encoding/Formalizing	

13	

«	A	set	of	programs	is	considered	to	cons2tute	
a	family,	whenever	it	is	worthwhile	to	study	
programs	from	the	set	by	first	studying	the	
common	properKes	of	the	set	and	then	
determining	the	special	properKes	of	the	
individual	family	members	»	
	
	
	
	
	
David	L.	Parnas	—	‘‘On	the	design	and	development	of	program	
families’’	in	TransacKons	on	So0ware	Engineering,	SE-2(1):1–9,	1976		14	

aka	Variability	

Variability		
“the	ability	of	a	system	to	be	efficiently	
extended,	changed,	customized	or	
configured	for	use	in	a	parKcular	context”		

Mikael	Svahnberg,	Jilles	van	Gurp,	and	Jan	Bosch	(2005)	

	
	

15	

16	

17	

SoWware-intensive	systems	

come	in	many	variants		

18	

Firefox	

21	

22	

FraSCAti

SCAParser

Java Compiler

JDK6 JDT

Optional

Mandatory

Alternative-
Group

Or-Group

Assembly Factory

resthttp

Binding

MMFrascati

Component Factory

Metamodel

MMTuscany

constraints

rest requires MMFrascati
http requires MMTuscany

FM1

Variability	Model	

Printer	
Firmware	

Linux	
Kernel	

26	

27	

28	

30	

Food?	Product	lines!	
(credits:	ChrisKan	Kaestner’s	slide)	

33	

34	

35	

36	36	

Extensible
	architect

ures	

(eg	plugin
s-based)	

Configura
Kon	

files	

System	

Preferenc
es	

Configura
tors	

Source	co
de	Build	

systems	

Comparison	o
f	*	

Structura
l	or	behav

orial		

models	

Product	Lines	
and		

Variability	

37	37	

Extensible
	architect

ures	

(plugins-b
ased)	

Configura
Kon	

files	

System	

Preferenc
es	

Configura
tors	

Source	co
de	

Build	syst
ems	

Comparison	o
f	Product

	

Quizz	Time		

Give	three	examples	of	soWware	product	
lines	(also	called	configurable	systems	or	

variability-intensive	systems)	
	
	

Software is eating the world (any
company will be a software company)

With software you can produce variants
of software; in fact it is more general:
you can produce variants of anything
since software is everywhere

If you have the super-power to “vary”
Then you will rule the world

Or

Xor

Mandatory

Optional

not, and, or, implies

Variability Models (feature models)

Variants of code (e.g., Java ou C)
Variants of user interfaces
Variants of video sequences
Variants of models (e.g., UML or
SysML)
Variants of « things » (3D models)
…

Variability: two definitions
•  “the ability of a software system or artifact to be

efficiently extended, changed, customized or
configured for use in a particular context” (Svahnberg
et al. 2005)

–  software/customization perspective

•  “an assumption about how members of a family
may differ from each other” (Weiss and Lai 1999)

– more related to the notions of domain and
commonality

Variability	in	Kme	vs	in	space	
•  Variability	in	Time	(releases)		

–  the	existence	of	different	versions	of	an	ar2fact	that	are	valid	at	
different	2mes	

•  Variability	in	Space	(variants)	
–  the	existence	of	an	ar2fact	in	different	shapes	at	the	same	2me	

42	

43	

44	

45	

46	

Variability = Complexity

a	unique	variant	for	every	

person	on	this	planet	

33	features	op2onal,	independent	

(credits:	ChrisKan	Kaestner’s	slide)	

320	features	
	

more	variants	than	es2mated	

		atoms	in	the	universe	

op2onal,	independent	

2000 features 10000
features	

The	development	of	a	
	
family	of	soWware	systems		
	
differs	from	the	development	of	
	
a	single	soWware	system	
	
	

52	

53	

«	The	development	of	a	
family	of	soWware	systems		
differs	from	the	development	of	
a	single	soWware	system	»	
	
Reuse	
CustomizaKon		
AutomaKon	
	

54	

Commonality	

Variability	

Assembly	Line		
and		

Mass	CustomizaKon	

55	

Reuse		
and		

Mass	CustomizaKon	
56	

StarKng	from	scratch?	

57	

You	cannot	start	from	scratch	

58	

59	

So0ware		
Product	Lines	

“a	set	of	so)ware-	intensive	systems	that	share	a	common,	managed	
set	of	features	sa8sfying	the	specific	needs	of	a	par8cular	market	
segment	or	mission	and	that	are	developed	from	a	common	set	of	
core	assets	in	a	prescribed	way”	[Clements	et	al.,	2001]	

Promises	of		
SoWware	Product	Line	Engineering	

60	

Single Systems

System Family

Accumulated
Costs

Up-Front
Investment

Lower Costs
per System

Number of
Different Systems

approx. 3 Systems
(Software Engineering)

Break-Even
Point

Klaus	Pohl	(2005)			

Promises	of		
SoWware	Product	Line	Engineering	

61	

Single Systems

System Family

Time to
Market

Number of
Different Systems

Time For Building
Common Artefacts

Shorter Development
Cycles due to Reuse

Klaus	Pohl	(2005)			

Single	SoWware	Development		

62	

SoWware	Product	Line	Development?		

63	

	
Time	and	Effort:	not	scalable!	

	
	

We	need	an	engineering	
process	specific	to	
so0ware	product	lines	

64	

ObservaKon:	“Reuse-in-the-large	
works	best	in	families	of	related	
systems,	and	thus	is	domain	
dependent.”	[Glass,	2001]	

	
65	

Domain	Engineering	

[...] is the activity of collecting, organizing, and
storing past experience in building systems [...]
in a particular domain in the form of reusable
assets [...], as well as providing an adequate
means for reusing these assets (i.e., retrieval,
qualification, dissemination, adaptation,
assembly, and so on) when building new
systems.

K. Czarnecki and U. Eisenecker
66	

Domain	Engineering	
	

~=	
	

Product	Line	Engineering	
	

67	

The	conven2onal	soWware	engineering	
concentrates	on	sa2sfying	the	

requirements	for	a	single	system	
	

Domain	Engineering	concentrates	on	
providing	reusable	solu2ons	for	

families	of	systems.		
	

68	

Key	idea:	building	a	reusable	
plagorm	during	domain	
engineering	

69	

70	

product2	

productn	

product1	

Specific	requirements	

71	

So0ware	Product	
Line	Engineering	

Factoring	out	commonaliKes	
	for	Reuse	[Krueger	et	al.,	1992]	[Jacobson	et	al.,	1997]	

	
	
	
Managing	variabiliKes		

	for	SoWware	Mass	CustomizaKon	[Bass	et	al.,	1998]	[Krueger	et	al.,	2001],	[Pohl	et	al.,	2005]	
	
	

72	

Mobile

3G+ 3G GPS

Maps

Camera

ü	
ü	
ü	

Mobile

3G+ 3G GPS

Maps

Camera

Domain/Variability	Model	

ConfiguraKon	 So0ware	Generator	

Domain	Artefacts		
	

Domain		
Engineering	

ApplicaKon		
Engineering	

«	the	investments	required	to	develop	the	reusable	arHfacts	during	
domain	engineering,	are	outweighed	by	the	benefits	of	deriving	the	
individual	products	during	applica8on	engineering	»	

Jan	Bosch	et	al.	(2004)			

Domain	engineering	

74	

“Reuse-in-the-large	works	
best	in	families	of	related	
systems,	and	thus	is	domain	
dependent.”	[Glass,	2001]	

Domain	Analysis	
(problem)	

• 	elicitate	requirements	and	scope	the	line	
• 	variability	modeling:	determine	
commonali2es	and	variabili2es	usually	in	
terms	of	features		

	

Variability	Model	
(Feature	Model)	

Common	assets	 Variants	

C++	

UML	
model	 service	

Reusable	Assets		
(e.g.,	models	or	source	code)		

Domain	Implementa2on	
(solu2on)	

	

Domain	engineering	(development	for	reuse)	

75	

Common	assets	 Variants	

ApplicaKon	engineering	(development	with	reuse)	

Reusable	Assets		
(e.g.,	models	or	source	code)		

Feature	Model	

product2	 productn	
product1	

Feature	ConfiguraKon	

Feature	ConfiguraKons	

“central	to	the	so0ware	product	
line	paradigm	is	the	modeling	
and	management	of	variability,	
that	is,	the	commonaliKes	and	
differences	in	the	applicaKons”	

		[Pohl	et	al.,	2005]	

Mobile

3G+ 3G GPS

Maps

Camera

ü	
ü	
ü	

Mobile

3G+ 3G GPS

Maps

Camera

Domain/Variability	Model	

ConfiguraKon	 So0ware	Generator	

Domain	Artefacts		
	

Domain		
Engineering	

ApplicaKon		
Engineering	

«	the	investments	required	to	develop	the	reusable	arHfacts	during	
domain	engineering,	are	outweighed	by	the	benefits	of	deriving	the	
individual	products	during	applica8on	engineering	»	

Jan	Bosch	et	al.	(2004)			

AcKviKes	related	to	domain	
engineering	and		

applicaKon	engineering	

77	

78	

Domain	Analysis	
•  Collect	relevant	domain	informa2on		

–  domain	experts	(interviews,	workshops)	
–  system	handbooks,	textbooks,	prototyping,	experiments,		
–  already	known	requirements	on	future	systems		
–  Crea2ve	ac2vity	

•  Domain	Defini2on	
–  examples	of	systems	in	a	domain,		
–  counterexamples	(i.e.	systems	outside	the	domain),		
–  generic	rules	of	inclusion	or	exclusion	(e.g.	“Any	system	
having	the	capability	X	belongs	to	the	domain.”).		

•  Domain	vocabulary	
•  Domain	concepts	
•  and	integrate	it	into	a	coherent	domain	model	

–  more	or	less	formal	 79	

Czarnecki	and	
Eisenecker	(2000)			

Domain	Modeling	(aka	Metamodeling)	
•  Ontology,	ER,	UML,	Ecore,	Feature	Model	

•  Analysis	of	similarity		
– Analyze	similari2es	between	en22es,	ac2vi2es,	
events,	rela2onships,	structures,	etc.		

•  Analysis	of	varia2ons		
– Analyze	varia2ons	between	en22es,	ac2vi2es,	events,	
rela2onships,	structures,	etc.		

•  Clustering		
•  Abstrac2on			
•  Classifica2on		
•  Generaliza2on		
•  Vocabulary	construc2on		 80	

81	

Unused	flexibility	

82	

Illegal	variant	

Scoping	AcKviKes	

83	

Domain/Product	Line	Scoping	

84	

Schmid	2002	

Domain	Design	

85	
Czarnecki	et	al.	(GPCE’05)			

Adop2on	and	Strategies	

•  ProacKve	(starKng	from	scratch)	

•  ExtracKve	(re-engineering,	from	products	to	
product	line)	

•  ReacKve	(hybrid)	

86	

87	

[Krueger	2002]	

ProacKve	

88	

ReacKve	

[Krueger	2002]	

89	

ExtracKve	

[Krueger	2002]	

Or

Xor

Mandatory

Optional

not, and, or, implies

Variability	Models	(feature	models)	

	
Variants	of	code	(e.g.,	Java	ou	C)		
Variants	of	user	interfaces	
Variants	of	video	sequences	
Variants	of	models	(e.g.,	UML	or	SysML)	
…	

Variability	Model		

ConfiguraKon	

Base	Artefacts	(e.g.,	
models)	

So0ware	Generator	
(derivaKon	engine)	

ü	 ü	

mapping		

Variability	Model		

So0ware	Generator	
(derivaKon	engine)	

Base	Artefacts	

mapping		

ü	

93	

Variability	Model		

ConfiguraKon	

Base	Artefacts	(e.g.,	
models)	

So0ware	Generator	
(derivaKon	engine)	

ü	 ü	

mapping		

95	

Unused	flexibility	

96	

Illegal	variant	

	
Feature	Model	
	
CommunicaKve	
	
AnalyKc	
	
GeneraKve	
	

97	

not, and, or, implies

Homework	
•  Jhipster	(hAp://www.jhipster.tech/),	let	us	consider	
the	last	version	(September	6,	2017)	

1.  List	all	op2ons	of	Jhipster	
2.  Propose	some	op2ons	that	Jhipster	could	propose/

support	
3.  Describe	some	combina2ons	of	op2ons	of	Jhipster	

that	are	not	possible;	jus2fy	why!	
Look	at	homepage,	documenta2on,	and… source	code!	

•  Upload	your	contribu2ons	(document)	here	
hAp://2nyurl.com/jhipster-MIAGE-RE1718	

(deadline:	next	week)		

Feature	Models		
(defacto	standard	for	modeling	variability)	

99	

Hierarchy:	rooted	tree		
Variability:		
•  mandatory,		
•  op2onal,		
•  Groups:	exclusive	or	inclusive	features	
•  Cross-tree	constraints	

Optional

Mandatory

Xor-Group

Or-Group

100	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

{CarEquipment,	Comfort,	DrivingAndSafety,	Healthing,	AirCondi2oning,	FrontFogLights}	

configuraKon	=	set	of	features	selected	

Optional

Mandatory

Xor-Group

Or-Group

101	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

{CarEquipment,	Comfort,	DrivingAndSafety,	Healthing,	AirCondi2oning}	

configuraKon	=	set	of	features	selected	

Optional

Mandatory

Xor-Group

Or-Group

102	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

Optional

Mandatory

Xor-Group

Or-Group

{CarEquipment,	Comfort,	DrivingAndSafety,	Healthing,	AirCondi2oning,	
Automa2cHeadLights}	

configuraKon	=	set	of	features	selected	

ü	
ü	

ü	

ü	

ü	

ü	

103	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

ü

Optional

Mandatory

Xor-Group

Or-Group

{AirCondi2oning,	FrontFogLights}	
{Automa2cHeadLights,	AirCondi2oning,	FrontFogLights}	
{Automa2cHeadLights,	FrontFogLights,	AirCondi2oningFrontAndRear}	
{AirCondi2oningFrontAndRear}	
{AirCondi2oning}	
{AirCondi2oningFrontAndRear,	FrontFogLights}	

{CarEquipment,	Comfort,	
DrivingAndSafety,	
Healthing}	 X

104	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

ü

Optional

Mandatory

Xor-Group

Or-Group

{AirCondi2oning,	FrontFogLights}	
{Automa2cHeadLights,	AirCondi2oning,	FrontFogLights}	
{Automa2cHeadLights,	FrontFogLights,	AirCondi2oningFrontAndRear}	
{AirCondi2oningFrontAndRear}	
{AirCondi2oning}	
{AirCondi2oningFrontAndRear,	FrontFogLights}	

{CarEquipment,	Comfort,	
DrivingAndSafety,	
Healthing}	 X

105	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

ü

Optional

Mandatory

Xor-Group

Or-Group

{AirCondi2oning,	FrontFogLights}	
{Automa2cHeadLights,	AirCondi2oning,	FrontFogLights}	
{Automa2cHeadLights,	FrontFogLights,	AirCondi2oningFrontAndRear}	
{AirCondi2oningFrontAndRear}	
{AirCondi2oning}	
{AirCondi2oningFrontAndRear,	FrontFogLights}	

{CarEquipment,	Comfort,	
DrivingAndSafety,	
Healthing}	 X

106	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

ü

Optional

Mandatory

Xor-Group

Or-Group

{AirCondi2oning,	FrontFogLights}	
{Automa2cHeadLights,	AirCondi2oning,	FrontFogLights}	
{Automa2cHeadLights,	FrontFogLights,	AirCondi2oningFrontAndRear}	
{AirCondi2oningFrontAndRear}	
{AirCondi2oning}	
{AirCondi2oningFrontAndRear,	FrontFogLights}	

{CarEquipment,	Comfort,	
DrivingAndSafety,	
Healthing}	 X

107	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

{CarEquipment,	Comfort,	DrivingAndSafety,	Healthing,	AirCondi2oning}	

configuraKon	=	set	of	features	selected	

Optional

Mandatory

Xor-Group

Or-Group

108	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

Optional

Mandatory

Xor-Group

Or-Group

Boolean	logic:	^,	v,	not,	implies	

109	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

Optional

Mandatory

Xor-Group

Or-Group

Or-group:	at	least	one!	

110	

Hierarchy	+	Variability		
=		

set	of	valid	configuraKons	

ü

ü

Optional

Mandatory

Xor-Group

Or-Group

{CarEquipment,	Comfort,	
DrivingAndSafety,	
Healthing}	 X

{AirCondi2oningFrontAndRear,	FrontFogLights,	SAControl}	
{AirCondi2oningFrontAndRear,	SAControl}	
{Automa2cHeadLights,	AirCondi2oning,	FrontFogLights}	
{AirCondi2oningFrontAndRear,	SAControl,	Automa2cHeadLights,	FrontFogLights}	
{FrontFogLights,	AirCondi2oning}	
{Automa2cHeadLights,	AirCondi2oningFrontAndRear,	FrontFogLights}	
{FrontFogLights,	AirCondi2oningFrontAndRear}	
{SAControl,	AirCondi2oning}	

φ

(Boolean)		
Feature	Models	

(Boolean)		
Product	Comparison	Matrix	

(Boolean)	
Formula	

(Boolean)	Feature	Models	

112	

Hierarchy	+	Variability	=	set	of	valid	configuraKons	

Optional

Mandatory

Xor-Group

Or-Group

fm1	

(Boolean)	Feature	Models	

113	

~	Boolean	formula	

Optional

Mandatory

Xor-Group

Or-Group

fm1	

Empty	set	of	
configuraKons	

Optional

Mandatory

Xor-Group

Or-Group

Dead	feature	

False	opKonal	
feature	

Optional

Mandatory

Xor-Group

Or-Group

Core	features	

{CarEquipment,	Comfort,	
DrivingAndSafety,	Healthing}	

Optional

Mandatory

Xor-Group

Or-Group

InteracKve	
ConfiguraKon	

Optional

Mandatory

Xor-Group

Or-Group

So0ware	Product	Line	Engineering	

•  Family	of	systems,	configurable	systems:	paramount	
but	hard	to	develop,	test,	and	maintain	

•  Specific	development	process:	domain	engineering	and	
applica2on	engineering	

•  Domain	engineering:	elicita2on	of	variability	
requirements,	commonali2es,	features,	scoping	

•  Modeling	requirements:	domain	model,	feature	model,	
product	comparison	matrix	
–  Based	on	the	analysis	of	textual	artefacts	(e.g.,	product	
descrip2ons),	source	code,	knowledge,	workshop,	etc.		

– Models	can	automate	the	deriva2on	and	tes2ng	of	variants	

Other	references	
•  Krzysztof	Czarnecki	and	Ulrich	Eisenecker	“Genera2ve	
Programming:	Methods,	Tools,	and	Applica2ons”	

•  S.	Apel,	D.	Batory,	C.	Kästner,	and	G.	Saake.	Feature-Oriented	
SoWware	Product	Lines:	Concepts	and	Implementa2on.	
Berlin/Heidelberg:	Springer-Verlag,	2013.		

•  Cory	Kapser,	Michael	W.	Godfrey:	"Cloning	considered	
harmful"	considered	harmful:	paAerns	of	cloning	in	soWware.	
Empirical	SoWware	Engineering	13(6):	645-692	(2008)	

•  C.	Kästner.	Virtual	Separa2on	of	Concerns:	Toward	
Preprocessors	2.0.	PhD	thesis,	2010	

•  Klaus	Pohl,	Günter	Böckle,	Frank	van	der	Linden:	SoWware	
Product	Line	Engineering	-	Founda2ons,	Principles,	and	
Techniques.	Springer	2005	

119	
		

Other	references	
•  Krzysztof	Czarnecki,	Krzysztof	Pietroszek:	Verifying	
feature-based	model	templates	against	well-formedness	
OCL	constraints.	GPCE	2006:	211-220	

•  José	A.	Galindo,	Mauricio	Alferez,	Mathieu	Acher,	Benoit	
Baudry,	and	David	Benavides.	A	Variability-based	Tes2ng	
Approach	for	Synthesizing	Video	Sequences	(2014).	In	
ISSTA'14	

•  Sarkar,	A.,	J.	Guo,	N.	Siegmund,	S.	Apel,	and	K.	Czarnecki,	
"Cost-Efficient	Sampling	for	Performance	Predic2on	of	
Configurable	Systems”	In	ASE’2015	

•  Mathieu	Acher,	Guillaume	Bécan,	Benoit	Combemale,	
Benoit	Baudry,	and	Jean-Marc	Jézéquel.	Product	lines	can	
jeopardize	their	trade	secrets	(2015).	In	ESEC/FSE'15	

120	

		

